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Abstract. The definition of modeling languages is a key-prerequisite for model-driven engineering (MDE).
In this respect, domain-specific languages (DSL) defined in terms of metamodels and UML profiles are often
considered as two alternatives. For interoperability reasons, however, the need arises to bridge modeling
languages originally defined as DSLs to UML profiles by defining (1) a specific UML profile to represent
the domain-specific modeling concepts in UML and (2) model transformations for transforming DSL models
to UML models and vice versa. A manual definition of a UML profile typically is a tedious and error-
prone task, but contains a high potential for automation. The contribution of this paper is to integrate
the so far competing worlds of DSLs and UML. We report on our semi-automatic approach based on the
manual mapping of domain-specific metamodels and UML using a dedicated bridging language as well as
the automatic generation of UML profiles and model transformations. We present our ideas within a case
study for bridging ComputerAssociate’s DSL of the AllFusion Gen CASE tool with IBM’s Rational Software
Modeler for UML.
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1 Introduction

Motivation. In software engineering in general and in model-driven engineering (MDE) in particular, there is a
movement from general-purpose languages (GPL) to domain-specific languages (DSL). For defining DSLs in the
field of MDE metamodels and UML profiles are the proposed options. While metamodels, mostly based on the
Meta Object Facility (MOF) [7], allow the definition of DSLs from scratch, UML profiles are used to extend UML
with domain-specific concepts.

In this work we focus on the interoperability between these two approaches, because the need to bridge modeling
languages originally defined as DSLs to UML often arises in practice. For example in the ModelCVS project [3] our
industry partner is using the ComputerAssociate’s CASE tool AllFusion Gen3 which supports a DSL for designing
data-intensive applications and provides sophisticated code generation facilities. Due to modernization of the IT
department and the search for an exit strategy (if tool support is no longer guaranteed), the need arises to extract
models from the legacy tool and import them into UML modeling tools while at the same time the code generation
of AllFusion Gen should in the future be usable for UML models as well. Besides these typical tool integration
and interoperability issues, when buidling UML profiles from scratch, the modeling concepts are often defined in
metamodels before creating the actual UML profiles, as it was done in [6].

Related Work. The integration of DSLs and UML has been already addressed in previous research. In
Abouzahra et al. [1], the integration process starts with an already existing, probably manually defined, UML profile
and one has to define the mappings between the DSL metamodel and the UML profile elements. Subsequently,
the model transformations between the DSL and UML models are automatically derived from these mappings.
Our work is different in that we do not assume that an UML profile is available yet. Instead, we assume that the
whole bridge, i.e., the transformations and the UML profile, has to be developed.

Ingredients for a DSL/UML bridge. First of all, it has to be mentioned that the current practice in bridge
development is an ad-hoc manner focused on implementation tasks as illustrated in Figure 1(a). First, one has
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Fig. 1. DSL/UML integration. a. Ad-hoc approach. b. Systematic approach.

to reason about correspondences between DSL and UML metamodel elements. Then, a profile must be defined
for the DSL metamodel in which stereotypes for each metaclass of the DSL are added as well as tagged values
for DSL features which are not directly representable in UML. Afterwards, one has to define the transformations
from DSL to UML and back again, whereas the transformations are based on the UML profile definition, e.g., for
assigning stereotypes and tagged values to UML model elements.

Drawbacks of ad-hoc implementation. The described approach for bridging DSLs to UML has several
drawbacks. In particular, these drawbacks are responsible for making the bridging task tedious and error-prone,
resulting in low productivity and maintainability.

1. Transformations and profiles are highly coupled. A change in the profile definition triggers changes in
the model transformation code.

2. Bridging covers many repetitive tasks. For each DSL modeling concept nearly the same tasks have to be
fulfilled in the integration process.

3. No guidelines. Users are not familiar with the integration task since it is typically a one-time job.
4. No explicit correspondences between DSL and UML elements. No high-level specification artifacts

are defined, instead one has to start with an implementation of the UML profile and the transformation rules
directly.

2 A semi-automatic Approach for Bridging DSLs with UML

We propose a semi-automatic approach and introduce two additional facilities for the integration process, as can
be seen in Figure 1(b). First, we propose the use of an explicit and formal mapping model which is built manually.
Second, we provide a Bridge Genenerator component which is capable of generating the required profiles and
transformations from the mapping models. The integration process then is as follows: First, the user defines
the correspondences between the DSL metamodel and the UML metamodel in terms of a mapping model in an
interactive mapping environment. The mapping model is expressed with a dedicated metamodel bridging language
which enables the automatic processing. After finalizing the mapping model, the Bridge Generator automatically
generates the UML profile and in the case that an uni-directional model transformation language is used, also the
transformations from the DSL to UML and back again.

Benefits of systematic integration approach. Our approach tackles the four mentioned drawbacks of the
ad-hoc implementation approach explained in Section 1.

1. Mapping model is single source of information. In our approach, it is sufficient that one modifies
the mapping model, only. The changes made in the mapping model are automatically propagated to the
UML profile and to the transformation definitions. Hence, the high coupling between the UML profiles and
transformations is transparent for the user.

2. Repetitive tasks are automated by model transformations. The only manual task is the definition of the
mapping model. Subsequently, the implementation artifacts, i.e., the UML profile and the transformations are
automatically produced by the Bridge Generator component. Furthermore, the Bridge Generator component



ensures that the profiles and transformations are always developed in the same manner for the same kind of
integration problem, leading directly to the next benefit.

3. Guidelines support for systematic integration. The ad-hoc integration does not ensure a systematic
integration. This drawback is resolved due to the following two reasons. First, the mapping model is built with
a specific mapping language, and second, there is an explicit integration method for overlapping (semantic
matches) and distinct elements (semantic mismatches) of DSLs and UML implemented in the Bridge Generator
component.

4. Explicit representation of correspondences. Our approach supports an explicit mapping model which
represents the whole integration specification in a single conceptual model. Furthermore, currently used doc-
umentations such as mapping tables can be automatically generated out of the mapping models.

2.1 Bridging Language

In this subsection we describe the abstract syntax of the language used to describe the mappings between DSL and
UML metamodels. As can be seen in Figure 2, we reuse the core weaving language of the ATLAS Model Weaver
[2], displayed in the mwcore package in Figure 2, which defines abstract concepts for namespaces such as ModelRef
and ElementRef and linking semantics, such as a WModel, WLink, and WLinkEnd. Note that each concept is
defined abstract. Our dedicated bridging language, defined in the package BridgingLanguage, consequently refines
them with concrete concepts. In particular, we defined a metamodel integration language which allows homogenous
mappings, meaning mappings between elements which are instances of the same metaclass. In the following, we
briefly describe each concrete subclass of the class WLink, which represents the mapping operators of the bridging
language.
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Fig. 2. DSL/UML Bridging Language.

– Cl2Cl-Mapping. This kind of mapping operator allows the user to map classes of the DSL metamodel with
classes of the UML metamodel. One speciality of Cl2Cl mappings is, that they can have superMappings, i.e.,
the feature mappings from super mappings are inherited to sub mappings. This allows for reuse of already
provided mapping information. Furthermore, the user can mark Cl2Cl mappings as abstract, meaning that
they have to be refined with concrete sub mappings. Finally, Cl2Cl mappings can have invariants expressed in
Object Constraint Language (OCL) [8] for defining conditions when a mapping should be executed.

– Att2Att-Mapping. This kind of mapping allows to map corresponding attributes between DSLs and UML
metamodels. In order to derive executable transformations for each Att2Att mapping the Cl2Cl mapping that
contains the Att2Att mapping has to be specified.

– Ref2Ref-Mapping. This kind of mapping is similar to Att2Att mappings with the difference that correspond-
ing references are mapped instead of attributes.

– Enum2Enum-Mapping. In order to transform attribute values correctly between DSL and UML models,
corresponding enumerations must be mapped. Therefore, we introduce Enum2Enum mappings to allow the
definition of equivalent enumerations.



– Lit2Lit-Mapping. This kind of mapping is used to define equivalences between literals of enumerations and
consequently, each Lit2Lit mapping is owned by an Enum2Enum mapping. Note that only Enumerations which
have totally corresponding literals can be mapped, i.e., each literal must be mapped to exactly one literal.

– Dat2Dat-Mapping. This kind of mapping is used to define equivalences between data types of DSLs and
UML. It is required because (1) data types which are semantically identical are sometimes named differently
and (2) DSLs often support specific data types which are not available in plain UML but can additionally be
defined in profiles.

2.2 Automatic Generation Process

The overall idea of using a mapping model is that sematic equivalent metamodel elements of DSLs and UML
are mapped. Consequently, some metamodel elements remain unmapped. The distinction between mapped and
unmapped elements is the main driver for the bridge generation process which is discussed in this subsection.

UML Profile Generation It is required that each DSL metaclass should be mapped in the final mapping
model. Unmapped DSL metaclasses are only allowed in prototypical mappings, since they are not included in the
generation process and consequently no complete bridge can be generated. For each Cl2Cl mapping a stereotype
is generated which extends the UML metaclass being referenced by the right end of the mapping. If the Cl2Cl
mapping has super mappings, the generated stereotype is a sub stereotype of the stereotypes generated from super
mappings.

The next step concerns the generation of the tagged values from Feat2Feat mappings, i.e., Att2Att and Ref2Ref
mappings. Assume the following Cl2Cl mapping: DSL::Class ! UML::Class. If we want to derive the tagged
values for the stereotype which is generated for the DSL class, we must analyze the features of the DSL class and
whether they are mapped to corresponding UML features or not. We can distinguish three distinct cases which
are described in the following.

– DSL::Class.features ∩ UML::Class.features. Features which are available in the DSL and in UML meta-
model should be linked in the mapping model via feature mappings, i.e., the values of the DSL features are
directly representable with UML features.

– DSL::Class.features \ UML::Class.features. Features which are only available in the DSL must not be
mapped via feature mappings to UML features. Furthermore, this means that the values of these features are
not representable in plain UML. Therefore, for each DSL feature which is not mapped to an UML feature a
tagged value is generated. In particular, if the feature is an attribute then a tagged value having as type a data
type is generated. If the feature is a reference, a tagged value is generated which can link to the stereotype
actually representing the referenced type in the DSL metamodel.

– UML::Class.features \ DSL::Class.features. Features which are only available in UML must be specially
treated. Though not relevant for profile generation, this case is relevant for generating model transformations.
The problem is that the values of these kind of features cannot be set with values of the DSL models. In order
to produce valid UML models, we must distinguish between optional and mandatory features. The first case
is that the feature is optional leading to no problems because a null value can be assigned. The second case
is more problematic, namely if the UML attribute is mandatory. We can check if a default value is available
for this attribute. If no default value is defined for the feature, the user must specify a value in the mapping
model which is automatically assigned for this particular feature.

The last step concerns type mappings, i.e., (un)mapped Enumerations, Literals, and DataTypes. If an enumer-
ation of the DSL metamodel fully corresponds to an enumeration in the UML metamodel then they are mapped
with an Enum2Enum mapping. This Enum2Enum mapping further requires that each literal is mapped to exactly
one literal with a Lit2Lit mapping. No further definitions are required in the UML profile. Otherwise, an additional
enumeration with corresponding literals must be generated in the profile. The treatment of DataTypes is similar
to that of enumerations.

Model Transformation Generation After derivation of the UML profile, the model transformations can be
generated. Due to brevity reasons we will not discuss the model transformations generation in detail, but give an
overview of the main characteristics. We generate model transformation rules for mapped classes which transform
instances of the source class to instances of the target class. If the target model is a UML model we must also
apply the profile and assign the corresponding stereotypes to the generated objects. This is required in order to
set tagged values for unmapped DSL features. When transforming attribute values we have to take care that
enumerations are treated correctly, i.e., if the enumeration is not mapped then the generated literal has to be
assigned, else the mapped literal has to be assigned.



3 Case Study

In this section we present our approach within a case study for bridging parts of the ComputerAssociate’s DSL
of the AllFusion Gen CASE tool and IBM’s Rational Software Modeler which implements the UML 2.0 standard.
First we briefly describe the involved metamodels, then an overview of the mappings, and finally the details for
one particular Cl2Cl mapping. Further details of the case study can be found on our project site4 including the
details for all Cl2Cl mappings.

3.1 AllFusion Gen’s Data Model

The metamodel for the data model of AllFusion Gen is illustrated in the package DataModel of Figure 3 and
contains concepts that allow modeling the data used by the applications. Since AllFusion Gen’s data model is based
on the ER model, it supports ER modelling concepts like EntityTypes, Attributes, and Relationships. In addition
to the ER modeling concepts, SubjectAreas can be used that contain EntityTypes as well as further SubjectAreas.
EntityTypes can have zero-or-one super type. Furthermore two concrete sub types of the abstract EntityType
concept can be distinguished, namely AnalysisEntityType and DesignEntityType. AllFusion Gen is typically used
for modeling data intensive applications which make excessive use of database technologies. Therefore, the data
model allows the definition of platform specific information typically usable for generating optimized database
code, e.g., EntityTypes have special occurrence configurations.

3.2 UML Class Diagram

It is obvious that the corresponding UML model type for AllFusion Gen’s data model is the class diagram. In this
work we only present the part of the UML metamodel which is relevant for integration purposes. The metamodel
excerpt is shown in Figure 3 in the package ClassModel. In UML Packages can contain further Packages as
well as Classes. Classes can be defined as either abstract or concrete and can have properties as well as arbitrary
superclasses. Properties represent attributes if the opposite property is not set, or role ends if the opposite property
is set.
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Fig. 3. Cl2Cl Mappings at a Glance.

3.3 Overview on the Mapping Model

In this subsection we present an overview of the mappings (cf. package MappingModel in Figure 3), covering
only the Cl2Cl mappings. Both metamodels make use of inheritance which results in abstract superclasses only
containing the name attribute. In order to allow for reuse of mapping information in sub mappings and to minimize

4 www.modelcvs.org/prototypes/



the number of feature mappings, the abstract classes are mapped with an abstract Cl2Cl mapping which is used
as super mapping for all other Cl2Cl mappings. SubjectArea, EntityType, Attribute, and Relationship are mapped
to Package, Class, Property, and Property, respectively. While the first two mappings are obvious, the last two
mappings have both the same target class. This is due the fact that UML does not distinguish explicitly between
attributes and relationships in the metamodel. AnalysisEntityType and DesignEntityType are not mapped to UML
metamodel elements, because both concepts would be mapped to Class in UML. Hence we decided to reuse the
mapping of the abstract EntityType class in order to infer that both sub concepts should be also mapped to Class.

In Figure 4 the resulting stereotypes for the Cl2Cl mappings are shown. Besides concrete stereotypes, two
abstract stereotypes have been produced: �DataDefinitionElement� is the super stereotype for all others and
�EntityType� has two concrete sub stereotypes corresponding to the subclasses of the metaclass EntityType.
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3.4 Details on the EntityType 2 Class Mapping

The mapping details for the Cl2Cl mapping between EntityType and Class are illustrated in the upper half of
Figure 5. Both concepts support inheritance, but with the difference that EntityTypes only support single inheri-
tance and Classes allow multiple inheritance. Despite this difference, the two references are mapped with a Ref2Ref
mapping because they support a similar feature. Furthermore, EntityTypes can have attributes and references, in
contrast UML classes can have properties which can be divided into two distinct subsets. As discriminator the
opposite reference is used whereas the property is either an attribute if the opposite value is null or a reference if
the opposite value is not null. Thus, we can map the attribute and relationship references to the property reference
with two Ref2Ref mappings with specific OCL conditions.



Profile generation The profile details resulting from the EntityType 2 Class mapping is shown in the lower half of
Figure 5. An abstract stereotype�EntityType� is generated for the abstract metaclass EntityType. Furthermore,
the metaclass EntityType has 4 platform specific attributes which are not available in UML. These attributes are
represented in the �EntityType� stereotype as tagged values. Finally, the multiple inheritance mechanism of
UML classes is restricted by assigning a special OCL constraint to the metaclass Class.

Transformation generation A simplified excerpt of the resulting ATL code is shown in Listing 1.1. An abstract
transformation rule (cf. first rule in Listing 1) with three reference mappings is generated. However, the current ATL
version does not allow to define do blocks for super rules, thus, feature to tagged value mappings must be defined
in concrete sub rules. In fact, two concrete sub rules are generated, one for transforming AnalysisEntityTypes (cf.
second rule in Listing 1.1) and one for DesignEntityTypes, which implement the feature to tagged value mappings
- which are also defined for unmapped features of the superclasses, e.g., the avgOccurrence attribute.

Listing 1.1. Resulting ATL code.
1 module DSL2UML; create OUT:UML from IN :DSL;
2

3 abstract rule EntityType 2 Class {
4 from s : DSL! EntityType
5 to t : UML! Class (
6 property <− s . a t t r i bu t e ,
7 property <− s . r e l a t i o n sh i p ,
8 superClass <− s . superEnt i ty
9 )

10 }
11

12 rule Analys i sEnt i tyType 2 Class extends
13 EntityType 2 Class {
14 from s : DSL! AnalysisEntityType
15 to t : UML! Class
16 do{
17 t . a s s i gnSt e r eo type ( Analys isEntityType ) ;
18 t . setTaggedValue ( ” avgOccurrence ” ,
19 s . avgOccurrence ) ;
20 . . .
21 }
22 }

4 Current Limitations

In this section we discuss current limitations of our approach which should be resolved in the future. In particular,
most of the limitations are related to typical database, XML schema, and ontology integration issues which have
been extensively reported in the literature [4], [5]. These reported issues are more general, nevertheless, they have
to be tackled when providing a special integration mechanism, in our case for integrating DSLs with UML.

Challenge 1: Multiple Correspondences. In this work we have focused on 1:1 correspondences, only.
However, in practice often 1:n, n:1, and n:m correspondences are needed to describe the integration. From a data
transformation point of view the question arises how to combine multiple input values to produce multiple output
values. From the profile generation point of view it seems challenging how to produce stereotypes and tagged
values for n:m correspondences.

Challenge 2: Lost information during round-trip. The goal of supporting full round-trip transformations
is currently not always achieved due to heterogeneity issues which have been first identified database integration [4].
These issues lead to value transformations that go beyond simple copying of values. Hence, some transformations
can be inverted and some transformations can’t. We are confronted with this challenge when there is a mismatch
in abstraction, aggregation, or precision between the source and the target model elements.

Challenge 3: 0:1 Mappings. This kind of mapping represents the problem when UML features have no
corresponding DSL features. In round-trip, the information of UML features which cannot be mapped to DSL
features are lost. One possible solution would be to use an annotation mechanism of the DSL if provided. If
no annotation mechanism is provided, the UML specific information cannot be captured within the DSL model,
instead this information has to be carried in a separate file and merged with the UML model which is produced
from the DSL model.

Challenge 4: Validation Support. One of the main goals of the generation process is that meaningful UML
profiles and working model transformation code is produced, also for prototypical mappings. Thus, the mapping
models must be validated. Validation support should cover at least reasoning on a set of mappings, compatible
data and object types, and mandatory features. The result of the validation process should be a list of mapping
errors as well as warnings.



5 Conclusion and Future Work

In this paper we have introduced a semi-automatic approach for bridging DSLs with UML. We developed a dedi-
cated metamodel mapping language between the DSL and UML metamodels and a component for automatically
generating UML profiles and model transformations from mapping models. This approach allows for faster devel-
opment and a higher maintainability of bridges between DSLs and UML. Furthermore, we developed tool support
for our bridging approach which is built on existing components available on the Eclipse platform. Further infor-
mation about tool support can be found on our project site.
For future work we strive to reduce the aforementioned current limitations. In addition, we are looking for automa-
tion techniques for building the mapping model by applying matching techniques similar to proposed techniques
in the research field of ontology and schema matching [9].
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